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Abstract

Track-based algorithms to determine the LHC beam position and profile at the CMS collision point
are described. Only track information is used and no reconstruction of the primary event vertex is
required. With only about one thousand tracks, a statistical precision of 2 µm for the transverse beam
position is achieved, assuming a well aligned detector. The algorithms are simple and fast, and can be
used to monitor the beam in real time. A method to determine the track impact parameter resolution
using the beam position and beam width calculation is also presented.



1 Introduction and Motivation
The collision region provides a very precise reference point in the plane transverse to the beam axis. The width
of the beam in the CMS interaction region is expected to be around 16 µm for nominal physics operation and the
expected variation of the beam during the beam coast, which should last on order of 10 hours, is expected to be
approximately 20% of the beam width ([1] page 273). This makes the precise determination of the beam position
an important input for many physics analysis [2]. In addition, this estimate can be used to check the tracking
performance and to extract the average impact parameter resolution.

This note first describes methods to determine the beam position and profile. Once this information is known with
high precision, it can be used to measure the average impact parameter resolution. Section 2 describes the different
beam and tracking scenarios that have been considered in this study. Section 3 describes the two different methods
to generate the Monte Carlo simulation samples. The first is a fast, parameterized Monte Carlo simulation using
track resolutions from the full simulation. The fast Monte Carlo simulation allows one to study a large variety
of beam and tracking parameterizations, but does not include effects like pattern recognition errors, noise, non-
Gaussian tails etc. Therefore, for more realistic studies, the full GEANT 4 based simulation of the CMS detector
was used, followed by the full reconstruction. Section 4 describes the d0 −ϕ0 fitter which is used to determine the
position and slopes of the beams and Section 5 describes additional fitting routines which extend the d0−ϕ0 fitter to
extract additional information about the beam. All the fitting routines are track based, requiring no reconstruction
of the primary event vertex. In Section 6, the beam parameters are assumed to be known with high precision and
this information is used to measure the impact parameter resolution function.

Some reasons why the precise determination of the beam position and other beam parameters are so important are:

• They allow the beam position to be used, especially in the High Level Trigger (HLT), as a precise estimate
of the primary interaction point for many physics analysis (lifetime, b-tagging, etc.). The beam position can
be used as a constraint in a primary vertex finder to further improve the vertex precision.

• A beam-constraint can be used to improve the momentum resolution for tracks coming from the primary
vertex (prompt tracks). They allow for unbiased pattern recognition (HLT and offline). In the pattern recog-
nition, a beam constraint is used in the seed generation to form the initial track candidates. Although the
beam constraint is removed in the final fit, a wrong beam position could bias the pattern recognition and lead
to inefficiencies.

• They facilitate the determination of the track impact parameter resolution (see Section 6). This in turn allows
one to validate the alignment and to check that the detector material is modeled correctly. The transverse
beam width of ≈ 16µm is smaller than the expected single track resolution even with the pixel system. This
fact can be used to directly estimate the average single track impact parameter resolution of the Tracker. For
high pT tracks, the resolution will initially be dominated by the alignment of the detector; the beam width
can therefore be used to directly check the alignment of the detector. Any new set of alignment parameters
can be validated by demonstrating that the impact parameter distribution for prompt high pT tracks gets
narrower. Measuring how the impact parameter resolution varies with the track momentum is a measure of
how well the contribution of multiple scattering to the track resolution and the material distribution in the
Tracker is modeled.

• They permit a check of the global alignment and the relative position alignment between sub-systems of the
CMS tracker. Using track stubs from different subsystems (TIB, TOB,TID, TEC, BPix and FPix) will allow
the alignment of each sub-system with respect to the others (see e.g. [3] page 125).

• They provide a real time beam position monitoring for minimizing the radiation dose in the Tracker and
feedback to the accelerator operators. To keep the exposure to ionizing radiation uniform in ϕ, it is desirable
to keep the beam in the center of the tracking detector. Measurements by CDF have shown that the ionization
radiation in the tracking volume has a radial dependence ≈ 1/rα with α in the range from 1.5 to 1.8. Here
r is the radial distance from the beam [4].

2 Simulation of the Beam parameters and Tracker scenarios
2.1 Parameterization of the beam and different beam scenarios

At the LHC (pp) and the Tevatron (pp̄), the longitudinal (along the beam direction) distribution of the collision
region is fairly long and according to [5] can be parameterized by a Gaussian with a width of the order of 6 - 11
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cm for CMS and 25 cm for CDF at the Tevatron. For both LHC and the Tevatron the transverse beam distributions
are Gaussian, with widths of the order of 10 to 20 µm. In general, the beam width as a function of z is described
by the so-called β-function (see, for example, [5] and [6]):

σb(z − z0) =
√

ε · β∗ · (1 + ((z − z0)/β∗)2), (1)

where β∗ is the amplitude function at the interaction point, ε is the emittance, and z0 is the center of the longitudinal
beam spot.

Table 1 lists the parameters for different beam scenarios that were evaluated. Figure 1 shows how the width of
the beam σb varies as a function of z. The width of the beam varies by only a small amount in the nominal LHC
configuration, while for the Tevatron Run II the beam width varies by about 10 µm between z = −30 and z = 30
cm. This feature enables CDF to measure not only the averaged beam position but also the β∗ and ε parameters
utilizing the excellent position resolution of its silicon system [2] [7].

Table 1: Different beam scenarios.
β∗ [cm] ε [cm] σz [cm]

Tevatron Run II [9] [10] 35 14 ×10−8 25
LHC start-up [1] [11] 200 3.75 ×10−8 11.24
LHC nominal [1] [11] 55 3.75 ×10−8 7.55

 [cm]0s=z-z
-40 -30 -20 -10 0 10 20 30 40

m
]

µ
be

am
 w

id
th

 [

0

5

10

15

20

25

30

35

Figure 1: Width of the beam as a function of z in cm for three different beam scenarios . The solid (black) line
corresponds to the nominal LHC configuration. The fine dashed (red) line is a LHC fat beam at β∗ = 200 cm and
ε = 3.75 × 10−8 cm. The dashed (blue) line corresponds to the Tevatron Run II beam configuration. The marks
show the RMS of the collision region.
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2.2 Tracking detector resolution scenarios

The five parameter description of a track helix is: (C,ϕ0,d0,cot θ,zp)

where:
C : is the half curvature of the track (same sign as the charge of the particle)
ϕ0 : is the direction of the track at point of minimum approach.
d0 : is the signed impact parameter distance between helix and origin at minimum approach.
cot θ : is the cotangent of the polar angle at minimum approach.
zp : is the z position at minimum approach.

Two CMS detector configurations, as derived from full GEANT 4 simulations, are considered in this note: with
pixels (see Ref. [1] page 256) and without pixels (Ref. [1] page 256 and Ref. [8]) in the tracking system. These two
detector configurations have very different resolutions on the track parameters most relevant to the beam profile
calculation: impact parameter d0, ϕ0 and z0. The resolution function was parameterized as function of pT (in
GeV/c), ignoring any polar angle dependence,

σtr
d0 = c0 +

c1
pT

. (2)

The parameter values are listed in Table 2 for d0, ϕ0 and z0 for both scenarios. For comparison, resolutions from
the CDF-II-like detector are also listed.

Table 2: Resolution functions of two CMS detector configurations. For comparison, resolutions from the CDF-II-
like detector are also listed.

configuration CMS with Pixel CMS without pixel CDF-II
d0 10 + 90/pT (µ m) 100 + 900/pT (µm) 11 + 10/pT (µm)
ϕ0 0.00011 + 0.00190/pT (rad) 0.00023 + 0.00580/pT (rad) 0.0003 (rad)
zp 0.0017 + 0.0084/pT (cm) 0.017 + 0.084/pT (cm) 0.5 (cm)

3 Data Generation
3.1 Fast parameterized Monte Carlo simulation using ROOT TPythia

The parameterized Monte Carlo simulation uses the ROOT TPythia class [12], which provides a C++ interface
to the F77 version of the PYTHIA 6.319 event generator [13]. This allows the fast generation of large data sets
with different beam parameters and tracking scenarios. On an AMD64 (32Bit OS), the rate is 162 events/sec for
minimum bias events compared to rates of the order of one event per minute for the full simulation. In the current
form, the fast parameterized Monte Carlo simulation does not include any pattern recognition effects. PYTHIA
creates interactions at the origin of the coordinate system. Final state charged particles are selected and the event
vertex is distributed according to Equation (1); offsets in x and y are applied and the beam can have a slope in x and
y with respect to the detector axis. Then the vertex and momentum information of these particles is transformed
into helix track parameters.

The track parameters of interest are then resolution smeared according to the different track resolution scenarios
described in Section 2.2.

Two sets of PYTHIA control cards 1) were used:
1) We used the following data cards to generate Minimum Bias Events:

pythia− >SetMSEL(1); // select all processes (aka Min Bias)
pythia− >SetMSTP(51,7); // select CTEQ 5L structure function
pythia− >SetMSTP(81,0); // switch off mutiple interactions
pythia− >SetMSTJ(22,2); // Decay those unstable particles
pythia− >SetPARJ(71,10.); // for which c*tau < 10 mm;
pythia− >SetMSTP(33,3); // include k-factor
pythia− >SetPARP(82,3.20); // cut-off pt for multiple interaction
pythia− >SetPARP(89,1960.);
pythia− >SetMSTJ(11,3); // select fragmentation function ”Bowler”
pythia− >SetMSTP(61,1); // master switch for initial state QED and QCD radiation
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1. Minimum bias.

2. QCD event with minimal parton ET of 50 GeV/c.

The rapidity and transverse momentum distributions of charged tracks are shown in Figure 2 for 10000 pp collisions
for the two PYTHIA sets. The minimum bias events have very low multiplicity, yielding only 1 track with pT > 1.5
GeV/c per event compared to about 7 such tracks for the events with the minimum parton ET requirement.
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Figure 2: Rapidity and pT distribution of charged tracks for minimum bias events (left) and for events with a
minimum parton ET >50 GeV (right) at

√
s = 14 TeV. Only tracks with pT > 1.5 GeV/c are considered.

3.2 Full detector simulation and track reconstruction using CMSSW

In this case the full detector simulation based on GEANT 4 and the full reconstruction within the CMSSW frame-
work is used to generate and reconstruct events. This gives a more realistic simulation, including pattern recogni-
tion effects, noise hits, non-Gaussian tails etc. Tracks from the Combinatorial Track Finder (CTF) [14] collection
were used. The track selection requirements for fully reconstructed tracks are listed in Table 3.

The fully reconstructed samples used are QCD samples for several p̂t bins and no pile-up, a QCD sample with low
luminosity pile-up (2 × 1033cm−2s−1), an inclusive bb̄ sample, and an inclusive tt̄ sample. The QCD samples
consist mainly of prompt tracks emanating from the primary interaction vertex, while bb̄ and tt̄ samples contain a
significant amount of tracks with non-zero impact parameter stemming from displaced b-decays. We demonstrate
that the d0 −ϕ0 fitter is insensitive to the sample composition. QCD samples with displaced beam spots were also
produced (see Table 4).

In order to simulate a more realistic beam profile, a vertex smearing software module [15] based on the β-function
was included. This smearing module displaces the vertex given by the generators using the β-function for the

pythia− >SetMSTP(71,1); // master switch for final state QED and QCD radiation
// uncomment the next 2 line line to set kinematic cuts:
//pythia− >SetCKIN(3,50.);
//pythia− >SetKSEL(0);
pythia− >Initialize(”cms”, ”p”, ”p”, 14000);
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transverse coordinates and a Gaussian distribution for the longitudinal coordinate. This module also allows the
beam to have slopes dx

dz
and dy

dz
with respect to the z-axis. The following parameters can be varied:

• X0, Y0, and Z0, where the default values are (0, 0, 0) µm.

• SigmaZ (σz) with the default of 7.55 cm

• dx/dz and dy/dz where the default is 0 µm/cm .

• BetaStar (β∗) with a default of 55 cm.

• Emittance (ε) with a default of 3.75 × 10−8 cm.

Table 3: Track selection requirements for fully simulated and reconstructed tracks.

Silicon Strip Hits > 7
Pixel Hits > 1
χ2/ndof < 5
transverse momentum (pT ) > 2 GeV/c
impact parameter uncertainty (σd0) < 150 µm

4 The d0 − ϕ0 fitter
This fit is both fast and robust and has been in use by CDF for many years (see e.g. [3]) to estimate the beam
positions both on-line and off-line. Within the CMS experiment, this fitter has also been initially studied [18].
Many physics analysis use the beam position calculated by this method as a precise unbiased estimate of the
primary interaction vertex. This fitting method is also used to get the initial parameters for the other fitters described
in Section 5.1. A determination of the primary vertices is not necessary for this algorithm and less data than fits
based on reconstructed primary vertices is required. The algorithms are expected to be insensitive to pile up
contributions, since it does not matter if the track emanates from the hard collision or from pile up. The various
fitters were integrated into the CMS offline framework [16], but are also available as stand alone routines [17].

The variation of the impact parameter of all tracks is shown in Figures 3(a) and 3(c) as a function of ϕ when
the beam is displaced with respect to the detector coordinate system. The transverse beam profile is shown in
Figures 3(b) and 3(d). Figures 3(a) and 3(b) correspond to a high statistics sample obtained with the fast Monte
Carlo simulation described in Section 3.1. The distributions corresponding to the fully simulated sample of 3000
minimum bias events are shown in Figures 3(c) and (d). The total number of tracks, selected by the requirements
listed in Table 3, is 1268.

This correlation is used to extract the beam parameters. To first order, the impact parameter d0 for tracks coming
from the primary vertex can be parametrized by

d0(ϕ0, zp) = x0 · sinϕ0 +
dx

dz
· sinϕ0 · zp − y0 · cosϕ0 −

dy

dz
· cosϕ0 · zp, (3)

where x0 and y0 are the position of the beam at z = 0, and dx
dz

and dy

dz
are the x and y slopes of the beam.

The d0 − ϕ0 fitter is a simple iterative χ2 fitter. The contribution from each track is weighted by its error. The χ2

distribution to be minimized is

χ2 =

NT racks
∑

i=1

(

d0i − (x0 · sinϕ0i + dx
dz

· sinϕ0i · zpi − y0 · cosϕ0i − dy

dz
· cosϕ0i · zpi)

σi

)2

, (4)

where σ2
i = σ2

d0 + 2 · σ2
Beam, and σBeam is the average transverse beam width.

Using a vector notation, the χ2 function can be written as
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Figure 3: (a) Correlation between d0 and ϕ0 for a displaced beam given by the stand alone generated sample. In
this example the displacement of the beam with respect to the detector coordinate system is x0 = 300 µm and y0
= 600 µm (no slope in x and y). We observe a sine function where the amplitude is given by

√

x2
0 + y2

0 = 734

µm and the phase is shifted by ϕ0 = tan
(

y0

x0

)

= 1.1 radians. (b) Shows the transverse beam profile for the

stand alone generated sample. (c) Correlation between d0 and ϕ0 for selected tracks from full simulation and
reconstruction. (d) Transverse beam profile from the full simulation.
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χ2 =

NT racks
∑

i=1

(

d0i − (~x · ~gi)

σi

)2

, (5)

where ~x = (x0, y0,
dx
dz
, dy

dz
) and ~gi = (sinϕ0i,− cosϕ0i, sinϕ0i · zpi,− cosϕ0 · zp).

The solution for ~x is then

~x = V · ~sg, (6)

where the inverse of the 4 × 4 matrix V is given by

V −1
lm =

NT racks
∑

i=1

gil · gmi

σ2
i

, (l,m = 1, 2, 3, 4) (7)

and the vector ~sg

sgl =

NT racks
∑

i=1

gli · d0i

σ2
i

, (l = 1, 2, 3, 4). (8)

Tracks must initially pass a set of basic quality requirements. From this set, tracks that have a large contribution
to the total χ2 (∆χ2 > ∆χ2

cut) or tracks which have a large impact parameter with respect to the fitted beam line
(|d′0| > Dcut) are removed until a given fraction of the tracks remain. All initially selected tracks are evaluated
at each iteration. A track that was rejected in a previous iteration can enter the next iteration as the estimate of
the beam position improves. In this way, no bias is introduced stemming from a bad initial fit. In this note an
initial value Dcut = 4.0 cm was used, and this selection was tightened at each iteration, Dn+1

cut = Dn
cut/1.5, until

about 50% of the initially selected tracks survive. The choice of this parameters is not optimized but also not very
critical.

As more tracks are included in the fit, the convergence to the generated values is observed in Figure 4. A statistical
precision of about 2 µm for x0 and y0 and ≈ 0.2 µm/cm for the slopes is achieved with 1000 tracks. This study
was done using the fast parametrized Monte Carlo simulation with pixels described in Section 3.1.

The results of the d0 − ϕ0 fitter for different fully simulated and reconstructed samples consisting of 500 events
each are shown in Table 4. In each case, the fit converges to a value within 2-3 µm of the value used to generate
the sample.

The 90% confidence limits for the transverse position of the beam are shown in Figure 5 for the case with pixel
(scenario 1) and for the case with no-pixel (scenario 2). The marker shows the input value used to generate the
samples at (300,600,0) µm. For scenario (1), 20k tracks are used in the fit while 50k tracks and tightened pT

selection are required in scenario (2). In the non pixel case, the pT cut was raised to pT > 5 GeV/c. The average
beam position can still be measured with worse resolution but the beam width cannot be resolved in this case. The
results of the fit for both scenarios running only with the fast simulation is presented in Table 5.
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Figure 4: d0 − ϕ0 fit results for (a) x0, (b) y0, (c) dx
dz

and (d) dy

dz
as a function of the number of tracks. Only 1000

tracks are needed to achieve a 2 µm statistical precision for the beam position. This study was done using the fast
parametrized Monte Carlo simulation with pixels described in Section 3.1.
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Table 4: Results of the d0 − ϕ0 fit for several fully simulated and reconstructed samples with 500 events, uncer-
tainties are statistical only.

Sample Iteration selected Tracks x0 [µm] y0 [µm] dx/dz [×10
−6] dy/dz [×10

−6]
generated values 0.0 0.0 0.0 0.0

QCD 1 6892 2.30 ± 0.67 2.17 ± 0.66 96.05 ± 12.87 61.92 ± 12.82
(80 < p̂T < 120) 19 4086 2.41 ± 0.94 −0.60 ± 0.92 44.22 ± 17.91 −19.98 ± 17.87

QCD 1 8824 2.06 ± 0.57 −0.11 ± 0.56 −10.44 ± 10.96 −38.23 ± 10.70
(120 < p̂T < 170) 19 5405 1.23 ± 0.77 −0.88 ± 0.76 −18.09 ± 15.11 −33.02 ± 14.54

b-jet 1 6392 0.56 ± 0.69 0.15 ± 0.68 233.78 ± 13.70 29.70 ± 13.26
(50 < p̂T < 120) 18 3431 −2.78 ± 1.06 2.38 ± 1.07 76.39 ± 21.34 −46.86 ± 20.64

QCD with PU 1 6933 −1.16 ± 0.74 −3.58 ± 0.74 95.05 ± 14.35 −35.69 ± 14.06
(2 × 10

33cm−2s−1) 19 3845 −0.57 ± 1.06 −1.02 ± 1.05 −35.08 ± 20.33 −20.41 ± 19.83
(50 < p̂T < 80)

inclusive tt̄ 1 10802 7.45 ± 0.50 3.91 ± 0.49 27.78 ± 9.30 44.87 ± 9.21
19 5680 −0.33 ± 0.75 0.43 ± 0.75 −12.94 ± 13.89 36.57 ± 14.09

generated values 300.0 600.0 2000.0 1000.0

QCD 1 2773 299.23 ± 1.01 592.55 ± 1.10 2004.07 ± 15.38 986.52 ± 16.42
40 < p̂T 19 1613 300.91 ± 1.39 601.41 ± 1.53 2023.38 ± 21.12 993.70 ± 23.01

generated values 300.0 600.0 150.0 0.0

QCD 1 2886 299.40 ± 1.05 600.48 ± 1.03 261.98 ± 15.83 −11.48 ± 15.72
40 < p̂T 19 1666 295.09 ± 1.51 599.13 ± 1.44 167.98 ± 22.35 −5.87 ± 21.86

Table 5: Results of the d0−ϕ0 fit for the fast simulation with and without pixel detector, uncertainties are statistical
only. In the non pixel case, the pt cut was raised to pt > 5 GeV/c.

Sample Generated Tracks x0 [µm] y0 [µm] dx/dz [×10
−6] dy/dz [×10

−6]
generated values 300.0 600.0 0.0 0.0

with pixels 1000 299.59 ± 1.64 601.83 ± 1.74 −3.93 ± 22.32 −2.85 ± 25.76

with pixels 10000 299.98 ± 0.54 601.35 ± 0.54 −16.57 ± 7.08 3.36 ± 7.25

with pixels 20000 300.35 ± 0.38 600.57 ± 0.38 −2.00 ± 4.98 −5.39 ± 5.09

non pixels 1000 296.89 ± 7.50 605.53 ± 7.70 −77.29 ± 98.57 −132.54 ± 104.35

non pixels 10000 299.43 ± 2.38 597.03 ± 2.40 −34.80 ± 31.47 69.42 ± 32.03

non pixels 20000 299.42 ± 1.89 597.02 ± 1.90 12.83 ± 24.88 44.83 ± 25.36
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Figure 5: 90% CL contours for the transverse beam position with different IP resolutions. The marker shows the
input value for the generation (300,600,0) µm. This study was done using the fast parametrized Monte Carlo
simulation described in Section 3.1. The big ellipse with a radius of approximately 3 µm corresponds to the
no-pixel case while the small ellipse with a radius of less than 1 µm corresponds to the case with pixel detector.
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5 Additional Beam Fitters
In the previous section, the d0 − ϕ0 fitter was shown to be robust, stable, and to yield good results. In this section,
additional fitters are described. These fitters are extensions of the d0 − ϕ0 fitter providing additional information
like the transverse beam width or the parameters of the β-function. These fitters are sensitive to several effects like
the detector acceptance and require excellent understanding of the track parameter uncertainties, therefore only
a proof-of-concept is given using the fast simulation. We only considered the detector configuration with pixels.
Without pixels the resolution is not sufficient to extract the beam width and β function.

5.1 The Log-likelihood fitter to extract the beam parameters

To extract the beam parameters an unbinned log-likelihood fit can be used which treats the contribution of the track
parameter errors to the probability function event by event. The probability function is the product of a longitudinal
and a transverse component:

P (d′0, zp, σ
tr
d0, σ

tr
z ) =

1√
2πσd′0(zp)

e
−

d′2
0

2σ
d′0

(z)2 · 1√
2πσz

e
−

(zp−z0)2

2σ2
z (9)

where d′0 is the impact parameter with respect to the beam given by

d′0 = d0 − (x0 +
dx

dz
zp) sinϕ0 + (y0 −

dy

dz
zp) cosϕ0. (10)

The error on d′0 is

σd′0(zp) =

√

(σBeam)
2

+ (σtr
d0)

2, (11)

where σtr
d0 is the impact parameter resolution of tracks as provided by the track fit. Assuming the transverse width

of the beam does not vary much in zp, as will be the case for the LHC nominal scenario, an average σBeam can be
used. The error on zp is

σz =
√

(σb
z)

2 + (σtr
z )2, (12)

where σtr
z is the z resolution of tracks as returned by the track fit. This is small compared to the longitudinal width

of the beam σb
z .

The likelihood function to be minimized is:

L = −2 ·
Tracks
∑

i

ln
(

Pi(d
′

0, zp, σ
tr
d0, σ

tr
z )
)

, (13)

where the measurements used in the fit are:
d′0, σ

tr
d0 : impact parameter with respect to the beam and the error.

zp, σ
tr
z : measured z of the track and error.

ϕ0 : direction of the track at the point of minimum approach.

The results of the fit (fit parameters) are:

x0 : center of the beam profile in the x axis.
y0 : center of the beam profile in the y axis.
dx
dz

: x component of the beam slope.
dy

dz
: y component of the beam slope.

z0 : center of the longitudinal Gaussian beam profile.
σz0

: longitudinal width of the beam.
σBeam : average beam width.

The minimization is done with MINUIT within the ROOT framework. Figure 6 shows how the fitted parameters
converge to the correct input value. The results for the transverse position and slopes are, within errors, identical
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to the d0 − ϕ0 fitter. A relative statistical precision of 20% for the beam width is achieved by using 1000 tracks.
The results were obtained using the CMS tracking system with pixels and with beam parameters similar to those
expected in the nominal LHC running conditions.

5.2 Fitting the β-function

This fit is the same as the one described in the previous Section 5.1, but instead of assuming a constant beam width,
the width is allowed to vary with z according to Equation 1. Instead of one fit parameter σBeam, both the emittance
ε and β∗ are now fit. With beam conditions similar to the Tevatron, the CMS tracker with pixel detector would be
able to provide a precise measurement of the beam profile in both longitudinal and transverse directions. Results
for various beam scenarios, each based on approximately one million events, are given in Table 6. There are two
problems with this fit:

• the parameters ε and β∗ are highly correlated and there is a systematic tendency for the fitted β∗ to be higher
than the input value and the fitted ε to be lower. This requires a different parameterization of the beam
profile, which does not have that problem.

• currently no detector acceptance effects are included. These could skew the probability function and would
need to be corrected for.

In the nominal LHC scenario the transverse beam width is expected to vary very little over the interaction region
justifying the use of a constant average transverse beam width as described in the previous subsection.

Table 6: Beam Profile fitting results for CMS tracker with pixels. All samples consist of 950000 events and were
generated with nominal z0 at 0.0 cm.

Input values Fitted values
σz ε β∗ z0 σz ε β∗

[cm] [10−8cm] [cm] [cm] [cm] [10−8cm] [cm]

25 14 35 0.006 ± 0.026 24.70 ± 0.018 9.96 ± 0.06 44.37 ± 0.40
11.24 3.75 200 0.072 ± 0.012 11.232 ± 0.0083 2.67 ± 0.12 227.0 ± 10.3
7.55 3.75 55 0.0106 ± 0.0078 7.55541 ± 0.0055 3.38 ± 0.21 68.7 ± 4.5
7.55 1.0 55 0.0048 ± 0.0078 7.5443 ± 0.0055 0.97 ± 0.25 63.8 ± 16.5
7.55 6.0 55 0.048 ± 0.0078 7.543 ± 0.0055 4.69 ± 0.37 63.4 ± 5.2
7.55 3.75 25 0.0048 ± 0.0078 7.5437 ± 0.0055 3.49 ± 0.58 27.57 ± 5.28
7.55 3.75 75 0.0048 ± 0.0078 7.5443 ± 0.0055 2.83 ± 0.25 90.86 ± 8.02
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of the beam, the trans-
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parametrized Monte Carlo simulation with pixels described in Section 3.1.
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Figure 7: Beam profile fit result with pixel in CMS. This study was done using the fast parametrized Monte Carlo
simulation described in Section 3.1.
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6 Extracting the average Impact Parameter resolution function
The expected width of the LHC beam in the CMS interaction region is 16 µm and can be considered constant in
z. This is smaller than the expected single track resolution even with the pixel system. This fact can be used to
directly measure and monitor the average single track impact parameter resolution of the Tracker. The width of
the impact parameter distribution with respect to the beam has two contributions: the width of the beam and the
impact parameter resolution of the tracking detector. These two contributions behave very differently. While the
beam width is constant, the impact parameter resolution is a function of the transverse momentum of the track.
This fact helps to disentangle the two. In this Section, two studies are presented. The first study, based on the fast
Monte Carlo simulation, uses the Log-likelihood fitter to extract the parameters of the impact parameter resolution
function. The second study is based on the full simulation and reconstruction. In this study, the impact parameter
and pull distributions for different bins in pT are fitted to extract the impact parameter resolution function and to
check the impact parameter uncertainty returned by the track fit. For both studies, the position and slope of the
beam are first determined with high precision using the d0 − ϕ0 fitter. Then the track parameters are recalculated
with the fitted beam as a new reference point. The uncertainty of beam position and slope given by the d0 − ϕ0 fit
is small and can be neglected.

6.1 The Log-likelihood fitter to extract the Impact Parameter Resolution

Once all the beam parameters (position, slope and width) are well known they can be fixed, in the likelihood
function described by Eq. (13), while the parameters c0 and c1 of the impact parameter resolution function Eq. (2)
are allowed to vary. The values of c0 and c1 can then be extracted minimizing the likelihood function Eq. (13).

Using the fast parametrized Monte Carlo simulation, samples with different impact parameter resolutions were
produced. The two impact Parameter resolution scenarios used to smear the generated tracks are:

1. σtr
d0(pT ) = 10 + 90/pT [µm] (as expected with pixels from full GEANT 4 simulation).

2. σtr
d0(pT ) = 100 + 900/pT [µm] (as expected without pixels from full GEANT 4 simulation).

The convergence of the likelihood fit for the c0 and c1 impact parameter resolution parameters are shown in Figure
8 for the scenario with pixels. The dotted lines represent the input value used to generate the sample. The case for
a detector without pixels is shown in Figure 9.
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Figure 8: Convergence of the likelihood fit for the c0 and c1 impact parameter resolution parameters, for impact
parameter resolution scenario (1). This study was done using the fast parametrized Monte Carlo simulation with
pixels described in Section 3.1.
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6.2 Measurement of the average Impact Parameter resolution from the full Monte Carlo
simulation

All the results in this subsection are obtained using the full Monte Carlo simulation with pixels described in
Section 3.2. First, the impact parameter d′0 (Eq. 10) is calculated in the beam reference frame and plotted for
different pT bins as shown in Figure 10. The distributions get narrower for higher pT values as the contribution
from multiple scattering decreases with pT . These distributions are fitted to a Gaussian distribution function. The
fact that the impact parameter resolution varies with the polar angle, as the track traverses more material, is not
taken into account and the distributions are only approximately described by a Gaussian function. We use the σ of
the Gaussian as an approximation of the impact parameter resolution averaged over all polar angles. As described
in Equation 11, two components contribute to the width of this distribution, the transverse width of the beam,
σBeam = 16 µm, and the impact parameter resolution of the tracker. So once the width of the beam is known
one can extract the impact parameter resolution of the tracker: σtr

d0(pT ) =
√

(σDistribution(pT ))2 − σ2
Beam. This

is plotted in Figure 11. The parameters of the resolution function are obtained by fitting this distribution with a
linear function. The result of the fit is given on the same plot.

The normalized pull distributions d′

0√
(σtr

d0
(pT ))2+σ2

Beam

are shown in Figure 12. These distributions are expected
to be well described by a Gaussian distribution with a mean of 0 and a standard deviation σ of 1 and serve as a
test that the impact parameter resolution as determined by the track fit is correct. Compared to the distributions in
Figure 10 the normalized distributions should really be Gaussian since the impact parameter uncertainty returned
by the track fit should include all effect like the polar angle dependence. In this case, the errors returned by the fit
seem to be underestimated by 10 to 20% depending on track pT (see Figure 13).
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Figure 10: Distribution of reconstructed d′0 (impact parameter in the beam reference frame, see 5.1 ) in bins of pT

obtained by the full MC simulation as described in 3.2. The track selection requirements are listed in Table 3.
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Figure 12: Distribution of reconstructed d′
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(normalized impact parameter in the beam reference frame,

see 5.1 ) in bins of pT obtained by the full MC simulation as described in 3.2. The track selection requirements
are listed in Table 3.
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7 Conclusions
The work presented in this note shows that the beam position and width can be determined with algorithms based
solely on track information. A statistical precision of 2 µm can be achieved for the average transverse beam
position with only one thousand tracks that pass the selection criteria. Assuming that the beam width does not
vary with z throughout the interaction region, it can also be measured with 20 % precision with the same track
sample. The determination of the beam width requires good understanding of the impact parameter uncertainties
as returned by the track fit.

The d0−ϕ0 algorithm is fast and robust against large beam displacements. It allows the determination of the beam
offsets and angles reasonably well without the pixel system, while the beam width, β∗ and emittance require the
tracking precision provided by the pixel detector. The d0 − ϕ0 fitter is ideally suited to monitor the beam during
data taking as has been done by CDF for many years.

Once the beam parameters are determined with high precision this information can be used to study the track
impact parameter resolution.

For the purpose of these studies the CMS detector simulation was expanded to include a more realistic simulation
of the event vertex distribution. This included beam offsets in x, y and z from the nominal center of the detector;
angles with respect to the detector z-axis and the interaction vertex to be distributed according to the β-function.
The fit algorithms have been implemented in the CMS reconstruction software and an interface to write and read
the beam spot data to and from the database has been developed.
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Appendix
An additional check has been done varying the beam position over a wide range. This allows for displacement of
several mm from the nominal detector coordinate system. Table 7 summarizes the results for a sample generated
with the LHC nominal configuration. Table 8 shows the results for the case without pixel detector.

Table 7: Beam Position fitting result with pixel in CMS tracker. Beam profile were generated using parameters
β∗ = 55 cm, ε = 3.75 × 10−8 and σz = 7.55 cm as expected for the nominal LHC stable runs. About 950K
tracks with pT > 2 GeV/c were used in each fit.

Input values Fitted values
x0 y0 dx/dz dy/dz x0(Fit) y0 (Fit) dx/dz (Fit) dy/dz (Fit)

[µm] [µm] [µm/cm] [µm/cm] [µm] [µm] [µm/cm] [µm/cm]
0 0 0 0 0.110 ± 0.047 −0.004 ± 0.047 1.08 ± 0.63 1.15 ± 0.63

100 300 0 0 100.011 ± 0.047 300.006 ± 0.047 0.59 ± 0.63 −0.22 ± 0.63
300 600 0 0 299.982 ± 0.047 600.05 ± 0.047 0.02 ± 0.63 0.15 ± 0.63
600 900 0 0 600.064 ± 0.047 899.928 ± 0.047 0.43 ± 0.63 0.23 ± 0.63
900 1200 0 0 900.071 ± 0.047 1199.96 ± 0.047 −0.81 ± 0.63 −0.65 ± 0.63

1200 1500 0 0 1200.03 ± 0.047 1500.04 ± 0.047 0.15 ± 0.63 0.31 ± 0.63
1500 2000 0 0 1500.00 ± 0.047 1999.97 ± 0.047 −0.49 ± 0.63 −0.03 ± 0.63
2000 3000 0 0 1999.91 ± 0.047 3000.02 ± 0.047 0.13 ± 0.63 −0.35 ± 0.63
3000 4000 0 0 3000.03 ± 0.047 4000.04 ± 0.047 0.15 ± 0.62 −0.74 ± 0.63
4000 5000 0 0 3999.92 ± 0.047 4999.96 ± 0.047 0.08 ± 0.62 −0.40 ± 0.62
300 600 10 30 300.048 ± 0.047 599.938 ± 0.047 10.41 ± 0.63 30.14 ± 0.63
300 600 30 60 299.991 ± 0.047 599.907 ± 0.047 30.32 ± 0.63 60.13 ± 0.63
300 600 60 90 300.04 ± 0.047 600.012 ± 0.047 61.71 ± 0.63 91.65 ± 0.63
300 600 90 120 300.014 ± 0.047 599.949 ± 0.047 90.20 ± 0.63 120.25 ± 0.63
300 600 120 150 300.017 ± 0.047 599.975 ± 0.047 120.63 ± 0.63 150.78 ± 0.63
300 600 150 180 299.998 ± 0.048 599.983 ± 0.047 148.74 ± 0.63 179.35 ± 0.63
300 600 180 210 299.958 ± 0.048 599.985 ± 0.047 180.29 ± 0.63 209.73 ± 0.63
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Table 8: Beam Position fitting result using tracks from CMS detector configuration without pixel. Beam profile
were generated using parameters β∗ = 55 cm, ε = 3.75 × 10−8 and σz = 7.55 cm as expected for the nominal
LHC stable runs. About 350K tracks with pT > 5 GeV/c were used in each fit.

Input values Fitted values
x0 y0 dx/dz dy/dz x0(Fit) y0 (Fit) dx/dz (Fit) dy/dz (Fit)

[µm] [µm] [µm/cm] [µm/cm] [µm] [µm] [µm/cm] [µm/cm]
0 0 0 0 0.03 ± 0.30 −0.63 ± 0.29 2.2 ± 3.9 2.9 ± 3.9

100 300 0 0 100.335 ± 0.30 300.05 ± 0.29 8.1 ± 3.9 −5.6 ± 3.9
300 600 0 0 300.33 ± 0.30 600.047 ± 0.29 3.1 ± 3.9 −3.4 ± 3.9
600 900 0 0 600.29 ± 0.30 899.969 ± 0.30 −1.7 ± 3.9 1.3 ± 3.9
900 1200 0 0 899.78 ± 0.30 1199.93 ± 0.29 −2.2 ± 3.9 1.9 ± 3.9

1200 1500 0 0 1200.04 ± 0.30 1499.89 ± 0.30 3.8 ± 3.9 1.3 ± 3.9
1500 2000 0 0 1500.31 ± 0.30 1999.65 ± 0.29 −3.0 ± 3.9 −4.0 ± 3.9
2000 3000 0 0 1999.93 ± 0.30 3000.4 ± 0.29 4.2 ± 3.9 −0.3 ± 3.9
3000 4000 0 0 3000.24 ± 0.30 3999.98 ± 0.29 −3.0 ± 3.9 6.2 ± 3.9
4000 5000 0 0 3999.76 ± 0.30 4999.94 ± 0.29 4.6 ± 3.9 −2.8 ± 3.9
300 600 10 30 300.60 ± 0.30 599.941 ± 0.29 17.2 ± 3.9 29.9 ± 3.9
300 600 30 60 300.04 ± 0.30 599.881 ± 0.29 33.0 ± 3.9 59.9 ± 3.9
300 600 60 90 300.03 ± 0.30 599.641 ± 0.29 65.9 ± 3.9 87.1 ± 3.9
300 600 90 120 299.97 ± 0.30 599.827 ± 0.29 89.9 ± 3.9 120.2 ± 3.9
300 600 120 150 300.44 ± 0.30 599.847 ± 0.29 127.4 ± 3.9 153.1 ± 3.9
300 600 150 180 299.83 ± 0.30 600.491 ± 0.29 146.2 ± 3.9 177.6 ± 3.9
300 600 180 210 299.97 ± 0.30 599.623 ± 0.29 179.1 ± 3.9 208.9 ± 3.9

24



References
[1] CERN/LHCC 2006-001, CMS Physics TDR Vol 1.

[2] There are many examples where the beam was used as an estimate for the primary interaction vertex. Two
examples are:
“Measurement of the Average Lifetime of B hadrons produced in p̄p collisions at

√
s = 1.8 TeV”, F. Abe et

al., The CDF Collaboration, Phys. Rev. Lett. 71, 3421 (1993).
“Measurement of B Hadron Lifetimes Using J/ψ Final States at CDF”, F. Abe et al., The CDF Collaboration,
Phys. Rev. D57, 5382 (1998).

[3] “The Silicon Detector of the Collider Detector at Fermilab.” Nuclear Instruments and methods in Physics
Research A 350 (1994) p 73-130.

[4] “CDF Run 2A Silicon Detector Damage. Assessment.” G. Bolla et al.
“http://www-cdf.fnal.gov/upgrades/run2b/P5 Mar03/damage.ps”

[5] Beam Physics Note 63 25/04/02, B. Muratori, ”Luminosity Considerations for the LHC”.

[6] W. Herr, B. Muratori, ”Concept of Luminosity”. Prepared for CERN Accelerator School and DESY
Zeuthen: Accelerator Physics, Zeuthen, Germany, 15-26 Sep 2003 “http://lhc-beam-beam.web.cern.ch/lhc-
beam-beam/papers/lum.ps”
“http://cas.web.cern.ch/cas/Trieste-2005/Lectures-pdf/Herr-luminosity.pdf”.

[7] “Tevatron Run II Luminosity, Emittance and Collision Point”
J. Slaughter, J. Estrada, K. Genser, A. Jansson, P. Lebrun, J. C. Yun, S. Lai
Particle Accelerator Conference, 2003. PAC 2003. Proceedings of the Volume 3, Issue , 12-16 May 2003
Page(s): 1763 - 1765 Vol. 3.

[8] B. Mangano, ”The CMS Tracker: contributions to hardware integration, software development and first data
taking”, Ph.D. thesis in preparation.

[9] V. Shiltsev et al., Phys. Rev. ST Accel. Beams 8, 101001 (2005).

[10] RUN II Handbook “http://www-bd.fnal.gov/runII/index.html”.

[11] “http://lhc.web.cern.ch/lhc/” under “Beam Parameter”.

[12] “http://root.cern.ch/root/html/TPythia6.html”.

[13] T. Sjostrand, L. Lonnblad, and S. Mrenna, “PYTHIA 6.2: Physics and manual”, arXiv:hep-ph/0108264.
“http://www.thep.lu.se/ torbjorn/Pythia.html”.

[14] W. Adam et al., “Track reconstruction in the CMS tracker”, CMS Note 2006/041 (2006).

[15] IOMC/EventVertexGenerators package within the CMS software reconstruction,
“http://cmssw.cvs.cern.ch/cgi-bin/cmssw.cgi/CMSSW/IOMC/EventVertexGenerators/?cvsroot=CMSSW”.

[16] The d0−ϕ0 and log-likelihood fits have been implemented in a package within the CMS software reconstruc-
tion. This package also includes a class object (BeamSpot) that holds all the beam information: XYZ beam
position, two slopes, RMS beam length, beam width, and a full covariance matrix. This object can be used to
store the beam information in the database. The fits available are: χ2 and log-likelihood fits for z-distribution,
d0 − ϕ0 fitter, log-likelihood fit for beam position and log-likelihood fit for extraction of the beam width. The
likelihood fitters have been implemented using MINUIT2.

[17] “http://cdcvs.fnal.gov/cgi-bin/public-cvs/cvsweb-public.cgi/beamfit/?cvsroot=lpc”.

[18] M. Vos and F. Palla, “b-tagging in the High Level Trigger”, CMS Note 2006/030 (2006).

25


